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1 Introduction

In late 50th Selberg proved local rigidity of co-compact discrete subgroup Γ of G =

SLn(R), n ≥ 3 [S]. One of the ingredient in his proof of this result is the statement that,

after a small perturbation in G, the subgroup Γ remains co-compact and discrete. While

compactness can be easily proved the proof of discreteness is quite complicated. Selberg’s

proof of discreteness is based on the analysis of fundamental domains for the action of Γ

on the symmetric space associated with G. He conjectured that the statement still true for

a group acting on symmetric space with a compact fundamental domain. This conjecture

was proved by A. Weil. He proved discreteness of a small perturbation of a co-compact

discrete subgroup Γ of any connected Lie group G [W]. Weil’s proof is very different from

Selberg’s proof and is based on the analysis of coverings of G/Γ by (small) open sets and

the corresponding coverings of G.

The purpose of our work is to simplify and generalize Weil’s proof. While we use the

basic Weil’s construction we prove the discreteness of small deformations of a discrete

co-compact subgroup of isometries of a locally compact metric space under some natural
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restrictions.

Weil’s theorem [W] was generalized in [A1], [A2]. Recently Weil’s theorem was extended

to uniform lattices of locally compact groups [GL]. We would like to note that proofs in

these papers are based on the study of a fundamental domain. This is not required in our

proof based on the Weil construction.

This work was done during our stay at MPIM Bonn. The authors would like to thank

MPIM for hospitality and support. We are grateful to Lenya Potyagailo for his useful

remarks and suggestions.

2 Preliminaries

In order to keep the paper self-contained we start by spelling out well-known definitions,

facts and well known theorems [ELL]. The subject discussed here is fundamental groups

and covering spaces.

(2.1). Let X and Y be two topological spaces. The map p : X → Y is called a covering

map (or shorter covering) if for very point y ∈ Y there exists an open set V ⊂ Y, y ∈

V such that p−1(V ) is the union of disjoint open sets Ui, i ∈ I such that the restriction

p |Ui
: Ui → V is a homeomorphism. The set p−1(y) ⊂ X is called a fiber over y. Clearly, a

covering map is local homeomorphism i.e. every point x ∈ X is contained in an open set

U,U ⊂ X such that V = p(U) is open in Y and the restriction p |U is a homeomorphism

from U to V . It is easy to see that a local homeomorphism is not necessarily a covering

map.

(2.2). Let f1, f2 be two continuous maps f1, f2 : X → Y. These maps are homotopic if

there exists a continuous map (homotopy) H,H : X × I → Y where I is an interval I =

[0, 1] such that H(x, 0) = f1(x) and H(x, 1) = f2(x) for all x ∈ X. Let {a(t) : t ∈ I} be a

path in X. Denote by [a] the set of all paths in X with the same end points as a(t) and
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homotopic to a(t). The composition [c] of two sets [a] and [b] is defined if the ending point

of paths in[a] is the starting point of paths in [b] and denote [c] = [a]? [b]. Let π1(X, x0) be

a set of all homotopic classes of all closed curves in X with x0 as the starting and ending

point.Then 〈π1(X, x0), ?〉 is a group which is called the fundamental group of X with a

based point x0.

(2.3). Recall that if X is path connected and x1, x2 ∈ X. Then there exists a natural

isomorphism between π1(X, x0) and π1(X, x1) [ELL]. We will say that a path connected

space X is simply connected if the fundamental group π1(X, x0) is trivial for a some

(hence for every) point x0 ∈ X. A space X is called locally simple connected if X admits

a basis of simply connected sets. A space X is locally path connected if X admits a basis

of open path connected sets.

Remark. A path connected (resp. simply connected) space is not necessarily locally

path connected (resp. locally simply connected).

Let us recall the following well known theorems [ELL].

Theorem 1. Let p : X̃ → X be a covering map. Suppose that X is simply connected

and locally path connected. If X̃ is connected then p is a homeomorphism.

Theorem 2 If a space X is path connected,locally path connected and locally simply

connected then there exists a connected, simply connected space X̃ and a covering map

p : X̃ → X.

The space X̃ is called the universal covering of X.

(2.4). Let G be the group of homeomorphisms of a space X. Let Γ be a subgroup of G.

We will say that Γ acts on X properly discontinuously if for every compact set K,K ⊂

X the set {γ ∈ Γ : γK ∩K 6= ∅} is finite. We will say that Γ acts freely on X if γx 6=

x for every γ ∈ Γ, γ 6= e and x ∈ X. It is not difficult to conclude that if Γ acts properly

discontinuously and freely on a locally compact space X, then for every non trivial element

γ ∈ Γ and point x ∈ X there exists a neighborhood V, x ∈ V such that γV ∩ V = ∅.
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Let X̃ = {[a], a is a path inX such that a(0) = x0} be the universal covering of X and

π1(X, x0) be the fundamental group of X. Then the natural map (γ, [a])→ γ ? [a] define

an action of π1(X, x0) on X̃. It is well known that this action is properly discontinuous,

free and the space of orbits Γ�X̃ is homeomorphic to X.

(2.5.) Let Γ be subgroup of a topological group G. The representation space R(Γ, G) the

space of all homomorphisms Γ→ G with the topology of point wise convergence. Clearly,

R(Γ, G) is a closed subset in the direct product qγ∈ΓGγ with the product topology. If Γ

is finitely generated and S is a generating set then R(Γ, G) is homeomorphic to a closed

subset of qs∈SGs with the product topology.

3 Deformation and discreteness

Let X̃ be a locally compact path connected, simply connected locally compact metric

space, Let ρ be a metric on X̃. Let Γ be a subgroup of the group of isometries Isom(X̃)

of the metric space X̃. Assume that Γ acts properly discontinuously, freely and the space

X = Γ�X̃ is compact. Thus p : X̃ → X is a covering map, X̃ is the universal covering

space for X and Γ is the fundamental group of X. Denote by ρ̃ the natural metric on X

induced by ρ. Since X is compact there exists a compact subset K of X̃ such that ΓK =

X̃. Let us show that

(i). There exists a finite set of open subsets {Ũi, i ∈ I} such that K ⊆
⋃
i∈I Ũi and the

restriction p | Ũi is a homeomorphism for every i ∈ I.

(ii). For every i, j ∈ I there exists one γi,j ∈ Γ such that

Ũi ∩ γi,jŨj 6= ∅ (1)

In particularly γii = e for all i ∈ I.

(iii). There exists d1 > 0, d1 ∈ R such that if p(Ũi) ∩ p(Ũj) = ∅ then

ρ̃(p(Ũi), p(Ũj)) > d1 (2)
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Indeed, since Γ acts properly discontinuously and freely on X̃ and K is compact there

exists a positive number r0 such that ρ(γx, x) > r0 for all x ∈ K, γ ∈ Γ, γ 6= e. Consider

a covering of K by a finite set of open balls Ũi = B(xi, r), xi ∈ K, r > 0, r ∈ R, r ≤

r0/10, i ∈ I.

Suppose that there exists a non trivial element γ ∈ Γ such that for some i ∈ I we have

Ũi ∩ γŨi 6= ∅ then ro ≤ ρ(xi, γxi) ≤ r0/5. Contradiction. This proves (i).

Assume that there are two different elements γ1 ∈ Γ, γ2 ∈ Γ and some Ũj such that

Ũi ∩ γ1Ũj 6= ∅ and Ũi ∩ γ2Ũj 6= ∅. Then the ρ(γ1xj, γ2xj) ≤ 6r. Hence,ρ(γ−1
2 γ1xj, xj) ≤

6r ≤ r0. Contradiction. This proves (ii).

Let us now show that it is possible to deform the covering Ũi, i ∈ I such that it also

fulfills (iii.) The idea is to deform step by step the existing covering such that the new

set of open balls still will be a covering and fulfills (i),(ii) and (iii.) Indeed, let {≤} be

the lexicographic order on I × I and let (i, j), i ≤ j be the minimal element such that

ρ̃(Ũi, Ũj) = 0. It is easy to see going alone the same way as we did in ii that there exists

a unique γ ∈ Γ such that ρ(Ũi, γŨj) = 0. For the covering Ũi, i ∈ I of K there exists a

positive number d0 such that for every point x ∈ K there exists Ũi0 for some i0 ∈ I such

that B(x, d0) ⊂ Ũi0 . Let us take Ũj = B(xj, r̃), where r̃ = r− d0/10. Clearly, that after a

finite number of steps we will get a covering which has properties (i),(ii), (iii.)

Remark 1. The proof of (i) and (ii) is also valid for a locally compact but not necessarily

a metric spaces X̃ and groups of homeomorphisms Γ of X̃ acting properly discontinuously

and freely.

Remark 2. We can reformulate property (2),(iii) in the following way: assume that for

i, j ∈ I we have Ũi ∩ γŨj = ∅ for all γ ∈ Γ. Then ρ(Ũi, γŨj) ≥ d1 for every γ ∈ Γ

Remark 3. For the covering {p(Ũi), i ∈ I} of the compact set X. there exists a constant

r1 such that for every x ∈ X there exists p(Ũi) such that

B(x, r1) ⊂ p(Ũi) (4).
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Let J be a subset of I × I such that for every element (i, j) ∈ J there exists γi,j such that

Ũi ∩ γi,jŨj 6= ∅ (5).

Obviously, the property p(Ũi) ∩ p(Ũj) 6= ∅ and (5) are equivalent. Let u ∈ Ũi0 , io ∈ I

and let {i0, . . . , ik} be the set all elements of I such that p(u) ∈
⋂

0≤k≤m p(Ũik). Hence

(i0, ik) ∈ J for all k, 1 ≤ k ≤ m. Thus u ∈ Ũ0 ∩ γi0,i1Ũi1 · · · ∩ γi0,imŨim . It follows from (4)

that there exists ik, 0 ≤ k ≤ m such that

B(u, r1) ⊂ γi0.ikŨk (5)

The following construction was actually introduced by A.Weil [AW1]. Let W be the

union of the disjoint open sets Ũi, i ∈ I. Let X∗ be the product W×Γ, where Γ is provided

with the discrete topology. Define a relation R as follows. Let (w1, γ1) and (w2, γ2) be

two elements of X∗. Then these two elements are R-equivalent if w1 ∈ Ũi, w2 ∈ Ũj, w1 =

γi,jw2 ∈ Ũi ∩ γijŨj and γ2 = γ1γi,j. From (2) easy follows that γi,i = e, γi,jγj,i = e. If there

are points ui ∈ Ũi, uj ∈ Ũj, uk ∈ Ũk such that ui = γi,juj = γikuk then uj = γj,iγi,kuj.

Thus γj,k = γj,iγi,k. Hence γi,k = γi,jγj,k. We conclude that R is an equivalence relation.

Let ϕ ∈ R(Γ,Isom(X̃) be a deformation of Γ. Define a relation R̃ on X∗ as follows: two

elements (w1, γ1) and (w2, γ2) are R̃–equivalent if w1 ∈ Ũi, w2 ∈ Ũj, w1 = ϕ(γi,j)w2 ∈

Ũi ∩ ϕ(γi,j)Ũj and γ2 = γ1γi,j. Since ϕ is a homomorphism we conclude that R̃ is an

equivalence relation. Set X̃∗ = W/R̃ and [w, γ] = {(w̃, γ̃) : (w, γ) ∼R̃ (w̃, γ̃)}. Clearly, X̃∗

is a locally compact topological space.

We will say that a deformation ϕ ∈ R(Γ, G) is J–small if

(i, j) ∈ J ⇔ Ũi ∩ ϕ(γi,j)Ũj 6= ∅ (6)

In other words

Ũi ∩ γi,jŨj 6= ∅ ⇔ Ũi ∩ ϕ(γi,j)Ũj 6= ∅ (6∗)
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Indeed, from (iii) follows that there exists a neighbourhood U of a trivial deformation

such that for ϕ ∈ U from Ũi ∩ γi,jŨj = ∅ follows that Ũi ∩ ϕ(γi,j)Ũj = ∅. Clearly there

exists a neighbourhood of a trivial deformation such that for (i, j) ∈ J and ϕ ∈ U we

have Ũi∩ϕ(γi,j)Ũj 6= ∅. Therefore there exists a neighbourhood U of a trivial deformation

consisting just of J–small deformations.

Remark 4. It is easy to show based on (6∗) that a J–small deformation is an isomor-

phism.

Let us show that the space X̃∗ is connected for any J–small deformation ϕ ∈ R(Γ, G).

It is enough to show that for any two points x, y ∈ X̃∗ there exists a connected set Y ⊂

X̃∗ such that x, y ∈ Y. Let x = [w, γ] and y = [u, γ̃]. Without lost of generality we can

and will assume that γ̃ = e. Since X̃ is path connected, there exists a path p(t), 0 ≤ t ≤ 1

in X̃ such that p(1) = γw, p(0) = u. There exist γi, Ũi, i = 0, 1, . . . ,m where γm = γ, γ0 =

e such that p(t) ⊂ γmŨm ∪ γm−1Ũm−1 ∪ . . . γ1Ũ1 ∪ Ũ0 where p(1) ∈ γmŨm, p(0) ∈ Ũ0 and

γiŨi ∩ γi−1Ũi−1 6= ∅ for all i = 1, . . .m, Moreover, we can and will assume that for i 6=

j, 0 ≤ i, j ≤ m we have γiŨi * γjŨj. Obviously Ũi ∩ γ−1
i γi−1Ũi−1 6= ∅. It follows from (1)

that γ−1
i γi−1 = γi,i−1 and Ũi∩γi,i−1Ũi−1 6= ∅ for all i = 1, . . .m. It follows from (6) that for

a small deformation ϕ we have Ũi ∩ ϕ(γi,i−1)Ũi−1 6= ∅ for all i = 1, . . .m. Therefore since

γ−1
i γi−1 = γi,i−1 we conclude that [Ũi, γi] ∩ [Ũi−1, γi−1] 6= ∅ for all i = 1, . . .m. Therefore

Y =
⋃

0≤i≤m[Ũi, γi] is a connected set and x, y ∈ Y.

Let w ∈ X̃. Then B(w, r1) ⊂ γijŨj ( see (5)). Set r̃ = r1/2. Then there exists a

neighbourhood Ũr̃ ⊂ U such that for all ϕ ∈ Ũ we have

B(w, r̃) ⊂ ϕ(γi,j)Ũj (7).

It follows from (5) that for any x = [w, γ] ∈ X̃∗ there exists Ũj such that

x ∈ [B(w, r̃), γ] ⊂ [Ũj, γ] (8).

Let us show that the space X̃∗ is Hausdorff. Indeed, let x, y ∈ X̃∗, be two different points.
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There are three cases:

(a) there exists [Ũi, γ] such that x, y ∈ [Ũi, γ]

(b) x ∈ [Ũi, γ1], y ∈ [Ũj, γ2] and [Ũi, γ1] ∩ [Ũj, γ2] = ∅

(c) x ∈ [Ũi, γ1],y ∈ [Ũj, γ2] and [Ũi, γ1] ∩ [Ũj, γ2] 6= ∅.

It is clear that in cases (a) and (b) there exit two open subsets W1 and W2 such that

x ∈ W1, y ∈ W2 and W1 ∩W2 = ∅. Case (c). It follows from the definition that there

exists ϕ(γi,j such that Ũi ∩ ϕ(γi,j)Ũj 6= ∅. Let x = (ui, γ1) and y = (uj, γ2). Set T = Ũi ∩

ϕ(γi,j)Ũj. Let m = inft∈T{ρ(ui, t) + ρ(ϕ(γi,j)uj, t)}. It follows from (8) that if m = 0 then

we have (a). Thus we will assume that m > 0. Let W1 be the ball W1 = B(ui,m/4) and

W2 be the ball W2 = B(uj,m/4). We will show that [W1, γ1] ∩ [W2, γ2] = ∅. Indeed, if

[W1, γ1] ∩ [W2, γ2] 6= ∅ then there exists ϕ(γk,l) such that W1 ∩ ϕ(γk,l)W2 6= ∅. It follows

from ii and (6) that γk,l = γi,j. Thus there is a point t ∈ T such that t ∈ W1 ∩ ϕ(γi,j)W2.

Therefore m ≤ ρ(ui, t) + ρ(ϕ(γi,j)uj, t) ≤ m/2. Contradiction. This proves the statement.

Denote by q the map q : X̃∗ → X̃ where q([w, γ]) = ϕ(γ)w. It follows from (7) and

(8) that q is a covering map. Moreover, since for every point in q([w, γ]) in q(X̃∗) we

have q([B(w, r̃), γ]) ⊂ q(X̃∗). Therefore we conclude that q(X̃) = X̃. Hence we have a

surjective covering map q of a connected space q(X̃∗) onto connected simply connected

space X̃. Thus q is homeomorphism. Clearly, q is Γ-equivariant map. Thus we proved

the following theorem.

Theorem 1. Let X̃ be a locally compact simply connected metric space. Let Γ be a

subgroup of IsomX̃. Suppose that Γ acts properly discontinuously and freely on X̃ such

that the space Γ�X̃ is compact. Then there exist a neighbourhood U of the inclusion

Γ ↪→ IsomX̃ such that for every ϕ ∈ U the group ϕ(Γ) acts properly discontinuously on

X̃.

Corollary 1. Let X be a compact locally simply connected path connected metric space.
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Let X̃ be the universal covering of X and let Γ be the fundamental group of X. Then

there exists a neighbourhood U ⊂ IsomX̃ of the inclusion i : Γ ↪→ IsomX̃ such that

ϕ(Γ) is a discrete subgroup of IsomX̃ for every ϕ ∈ U.

From theorem 1 and Selber’s lemma [S, Lemma 8] follows

Corollary 2. Let X̃ be a locally compact simply connected metric space. Let Γ be a

subgroup of IsomX̃. Assume that there exist a faithful linear representation ϕ : Γ →

GLn(k) over field k. Suppose that the action of Γ on X̃ is properly discontinuous and

the space Γ�X̃ is compact. Then there exist a neighbourhood U of the inclusion Γ ↪→

IsomX̃ such that for every ϕ ∈ U the group ϕ(Γ) acts properly discontinuously on X̃.
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